Modular absolute decomposition of equidimensional polynomial ideals
نویسنده
چکیده
In this paper, we present a modular strategy which describes key properties of the absolute primary decomposition of an equidimensional polynomial ideal defined by polynomials with rational coefficients. The algorithm we design is based on the classical technique of elimination of variables and colon ideals and uses a tricky choice of prime integers to work with. Thanks to this technique, we can obtain the number of absolute irreducible components, their degree, multiplicity and also the affine Hilbert function of the reduced components (namely, their initial ideal w.r.t. a degree-compatible term ordering).
منابع مشابه
On Bezout Inequalities for non-homogeneous Polynomial Ideals
We introduce a “workable” notion of degree for non-homogeneous polynomial ideals and formulate and prove ideal theoretic Bézout Inequalities for the sum of two ideals in terms of this notion of degree and the degree of generators. We compute probabilistically the degree of an equidimensional ideal.
متن کاملChordal networks of polynomial ideals
We introduce a novel representation of structured polynomial ideals, which we refer to as chordal networks. The sparsity structure of a polynomial system is often described by a graph that captures the interactions among the variables. Chordal networks provide a computationally convenient decomposition into simpler (triangular) polynomial sets, while preserving the underlying graphical structur...
متن کاملAffine solution sets of sparse polynomial systems
This paper focuses on the equidimensional decomposition of affine varieties defined by sparse polynomial systems. For generic systems with fixed supports, we give combinatorial conditions for the existence of positive dimensional components which characterize the equidimensional decomposition of the associated affine variety. This result is applied to design an equidimensional decomposition alg...
متن کاملPowers of Ideals : Primary Decompositions , Artin -
Let R be a Noetherian ring and I an ideal in R. Then there exists an integer k such that for all n 1 there exists a primary decomposition I n = q 1 \ \ q s such that for all i, p q i nk q i. Also, for each homogeneous ideal I in a polynomial ring over a eld there exists an integer k such that the Castelnuovo-Mumford regularity of I n is bounded above by kn. The regularity part follows from the ...
متن کاملPowers of Ideals: Primary Decompositions, Artin-Rees Lemma and Regularity
The regularity part follows from the primary decompositions part, so the heart of this paper is the analysis of the primary decompositions. In [S], this was proved for the primary components of height at most one over the ideal. This paper proves the existence of such a k but does not provide a formula for it. In the paper [SS], Karen E. Smith and myself find explicit k for ordinary and Frobeni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1012.5210 شماره
صفحات -
تاریخ انتشار 2010